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ABSTRACT 

This paper contains the following results. For a sequence A, let M 

be the number of non-zero entries in it; suppose A, B and C = (A+B) are 

sequences that are the degrees of simple graphs; then if Jc.<_ 2(KA ♦ M« - 2)» 

there exists a realization of C having disjoint factors with degree sequences 

A and B. At least one of these can be a forest. If A and B are forest 

realizable, the conditions under which A, B and C can be simultaneously 

realized with A- and B-factors that are forests are characterized. 
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..  INTRODUCTION 

Let A -  (a.) and B « (b.) represent sequences of length n of integers, 

ind suppose that there exist (simple) graphs G , G., G. on n vertices such that 

fhe degree of the jth vertex in G. is a., in G. is b., and in G. is 

a. ♦ b.. Thfc sequences A, B and C = (a. "♦■ b.) are then said to be "realizable 

sequences' . 

A number of authors have considered the question of the simultaneous reali- 

zation of such sequences; that is, of the existence of a graph G  realizing C 

having an "A-factor" (or subgraph having degree sequence A), (whose complement in 

C is then a B-factor.) S. Kundu showed that if ail the entries of B are k or 

k + 1 then such a realization exists [5]., he also showed [6] that if A and B 

are "tree realizable'  (b., a. > 1, Ea. « Eb. « 2n - ?) then the same result holds, 

with the realizations of A and B both trees. One of the present authors (M.K.) 

showed that the result holds if A and B are "forest realizable" (Za. < 2(M -1), j -   A 

Eb. <_ 2(M_-1) where Mx is the number of nonzero index entries in X), though it 

may not be possible for the realisations of A and B both to be forests [U]. On 

the other h .K' he showed by an example that the condition Z(a. + b.) = "Kn - 1) 

is not sufficient to guarantee that simultaneous realisations exist [U]. 

It is the purpose of this paper to show that the condition 

n 
I    (a.  + b.) <  2(H.  + Mn - 2) 

j=1    3      : AB 
(1) 

t 

does guarantee the existence of simultaneous realizations, and to provide a precise 

characterization of the sequences for which   A   and   B   are forest realisable yet 

there is no simultaneous realization of    A, B,    and   C    with   A    and    B   forests. 

IM^^MKJUIWHh aBiii|aa^MflaHfl||||M 
■■   ■       ■■  •■  - 



■ 1^ ■ •'• • " ■•"— t^^mr^r*  -■?■—J" 

Very little Is known about realizable sequences A, B and C that are not 

simultaneously realizable. Koren has characterized those for which A is a "claw* 

[3]; it may well be that while such sequences are possible for I(a. + b.) > 

2(M + M - 2) they may occur for only a very restricted class of sequences, and 
AB 

characterization of that class may well be possible. 

2.  THEOREMS AND DISCUSSION OF PROOFS 

Our main result is: 

Theorem 1: Let A s {a.}, B = {b.}, C = {a. •»• b.) be realizable sequences of 

length n, for which (1) holds. Then A, B, and C are simultaneously reali- 

zable. At least one of A or B can be a forest in a simultaneous realization. 

We prove this by first noting that (if A, B and C are nontrivial) there 

must be an index for which a and b are respectively (l,l),(l,2),(2,l)t(l,0) 

or (0,1). 

We then, when there are 6 or more vertices, give a prescription for taking 

such sequences and reducing them co shorter sequences having the same properties, 

or to sequences for which Kundu's factor theorem may be applied. When n is five 

or less the graphs may be explicitly determined. 

The prescription is basically this. A vertex v. that is to have degrees 

a. and b. of (1,0) is to be connected in A (and C) to a vertex of largest 

degree in A; siiuilarly with A replaced by D for denies (0,1). This 

connection is not always possible, since it may lead to a sequence C which is 

not realizable. 

We shall, in section 3, indicate the exact circumstances in which this failure 

can happen and, in section U, exhibit a resolution. If there exists (1,1) vertex 

but no (1,0) vertex, the (1,1) vertex will be split into two and hence the 

sequences are reduced to the (1,0) case. This is done in section 5. Finally 

when no (1,0),(0,1) or (1,1) vertices exist, we modify the sequences by 

mmmm ■Mai 
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replacing a (1,2) vertex by (1,0). Then we show how to construct realizations 

of the original sequences fron realizations of the modified sequences. 

The same procedure yields as a second conclusion that if A and B are 

forest-realizable then A, B and C can be simultaneously realizable with A and 

B forests if and only if certain conditions hold: 

Theorem 2; Let A, B, C be realizable sequences as above with A and B 

forest-realizable. Then C is realizable with two disjoint forest factors having 

degrees A and B if and only if at least one of the following couditions holds. 

a) Neither A nor B is a "claw" with at least one isolated vertex. (By a 

clriw we mean that one vertex meets every arc.) 

b) ai I2(MA - 1) or Zbi     2(MB - 1). 

c) A is a claw and 

c.) There is an index j with a. » 0 and b, > 1, 

or c-) B is a claw with the same 'center" as A. 

or c«) If a. > 1 then b. » 0. 

d) The same as condition c, with interchanged roles for A and B. 

If none of these conditions hold, it is easily seen that the non-claw sequence 

(A, say) can only be realized with a cycle, since Ea. = 201.-1), and any A-factor 

will have at least two non-trivial components. In fact, A then can be realized 

with exactly one cycle. The converse will be proven through our procedure. The 

same arguments will also show the following: 

Corollary-. If A is not forest-realizable, then C has a realization in 

which the B-factor is a forest, and the A-factor is connected except possibly for 

isolated vertices. 

3.  CRITICAL SEQUEHCES 

Erdos and Gallai showed [1] that a sequence C: c.s^ c. >_ ... ^ c  of 

nonnegative integers, with even sum, is realizable iff, for k = l,...,n. 

■wiim -> m—m ii ■»*—fc»-l»i 11 r i ^^^- 
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k n 
I   c. - k(k-l) < I     mln(c., k). 
1«1 1       " i«k+l    1 

(2) 

From now on, let us suppose that C * A -•> B is nonincreasing.  It Is easy to 

see, that if c »1 (a = 1, b = 0, say) and if for each k, the right-hand 
n      n     n 

side of (2) exceeds the left-hand side at least by two, then we may connect v  in 

A and in C to a vertex of largest degree in A. 

We call a sequence k-critical if the right-hand side exceeds the left by at 

roost 1. We call the sequence completely k-critical or partially k-critical 

depending on whether the difference is 0 or 1. 

If a sequence is partially k-critical, no vertex of degree k or less may be 

connected to another such vertex by an arc in any realization, but if there are no 

other more restrictive criticalities, any other vertex may be linked by an arc to 

any vertex in some realization c' C. 

If a degree sequence is completely k-critical, ther. no vertex of degree k or 

less can be linked by an arc to any vertex other than the first k. 

In the next lemma, we summarize those properties of critical sequences which 

also fulfill condition (1), which we will need for our proof. 

Lemma 3;  If C = c, > ... > c  fulfills condition (1) and is k-critical thon. 
  I —   — n 

a) k < 4. 

b) If k s 2, then at most three of the ?., b., i ^ 3 may be larger than 

c) If k = 3, U then a., b. <_ 1 for i > »♦. 

Proof:    Let    Z, Y, X   and    W   represent the number of vertices    v., i > k    of 

the form    (l,0),(l,l),U,0),U,t"),    respectively, with    S, > 2,  *" > 1.     (in this 

lemma, the pairs are unordered).    Let    G   realize   C. 

I 
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Since C is critical, there are at least min(c., k) edges in G between 

the vertex v. (i > k) and the set {y,t...v.)   with at most one exemption, if 

the criticality is partial. Hence: 

fl ci-fy  (k"1) ♦ Z ♦ 2» + 2X + W-min(3,k) - 1. 

Mote that the -1 appears only if C is partially k-critical, and then there is 

at least one index i > k such that c. > k. On the other hand, 

M. ■»• Mn - 2 < 2k + Z ♦ 2Y ♦ X + 2W - 2 
A   B    — 

where the    2k    accounts for the possibility that    a., b. > 1    for    i * l,.*.,k. 

Thus, by condition (1), 

~k (k-1) + X + W - 1 < 2k. (3) 

The proof follows by substituting, in (3) appropriate values for k. 

U. THE (0,1) AND (1,0) CASES 

The proof of Theorem 1 is ty induction. 

W<3 can verify our induction hypothesis by explicit construction in all cases 

for five or fewer vertices. We therefore assume that we have six or more vertices. 

For simplicity we assume that the degree sequence B is forest-realizable (while 

A may or may not be). 

It is a result of Kundu that if all degrees of B (or A) are zeroes or ones 

then there exists a realization of C with A and B factors. We may therefore 

restrict our intention to sequences for which at least one degree of A and one of 

B are two or .uore. 

In this section we assume c =1. We will examine five cases. 
n 

i 

f 
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U.l. a aO AND C 1-CRITICAL 
n _____^__^^___ 

We first assume that C is completely one-critical. Then a. + b » n - 1. 

Call the vertex of highest B degree v-. Then if b- < M - 1 and b. > 1, we 

nw connect v  to v, rather than to v,., and all conditions of our theorem ' n 1 B 

will hold on the remaining vertices.    Recall that sequence    B   is assumed to be 

forest-realizable. 

Suppose b = Mn - 1; since a * 0, we nave M. < rj - 1. Thus the (n-1) 

edges touching v, and the (M_ - 2) oi:h-.,r edges touching v. will account for 

all    MA + M- - 2    edges    and we rust have.    M    = n - 1,    and hence    a^ s 1.    But if 
As A D 

a_ s 1, we have c, = n - 1 > M, and c. = M_, which imply the existence of at B 1       — A      2B 

least H. + M - 1 edges, a contradiction. 

Suppose instead that bn < Mn - 1, but b. =1; then the degrees of vertex 
Do X 

v  are (n-2, 1). We connect v  to every vertex in A except v  which we 

connect it to in B. The remaining degree sequences A, B and C obviously will 

all be realizable. We need only show that condition (1) still holds after these 

connections are made. The left-hand sido, after these connections diminishes by 

2(n-l) or at least 2M.. If any part of A remains to be constructed, the new 

(M. - 1) is at least one, while H_ has diminished bv 2,    the right-hand side 
A B 

ias diminished by at most    2((M    - 2) ■•• 2)    so that the inequality still holds.     If 
A 

A is entirely constructed, one can s.-'mply realize B ^nd the inequality is 

irrelevant. 

The case that C is partially one critical ia similar. 

Let us say that a sequence is super-k-critical if it violates condition (2), 

for k. We will treat r.ow the 'symmetric" case: 

U.2. b =0 AND C  1-CRITICAL n 

The same arguments hold except that A may not be forest-realizable. Call 

the vertex of highest degree v . It is necessary to verify that if 

■ - -  --'-■■'■■' ,    j.l.ll^^^^M, L ^ J.... .■,.■ ■.      ... 
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a, ♦ b. » n - Xt «..•> 1, and a. < M. - 1, then connecting v  to v. does not 

make A super-k-critical for k > 2. We may assume that A is originally 

k-critical for some k >^2. The number of arcs of A other than those connecting 

to v  must be at least M. - 2 and equal to it only if all A degrees except 

three are ones. The total number of arcs in C would then necessarily be at least 

M - 2 + a, + b, s n + M. - 3. Since M0- < n - 1, this bound is M. ■•■ M_ - 2 A11A B—    ' AB 

which must therefore be an equality. This implies M = n - 1, b = n - 2, a = 1, 

in this case both A and B are tree realizable sequences and B is a claw so 

that its realization is trivial and A may be realized from the remainder as in 

the previous case. 

The cases with higher criticalities are simpler: 

U.3, C l-CRITICAL 

There is no problem here since all connections will in our procedure 

automatically be made toward the four largest degree vertices, avoiding U-super- 

criticality. 

U.«*. C 3-CRITICAL 

This case presents a problem of supercriticality only if the suggested 

connections of    v     involve a vertex other than   v., v.    or   v..    Since the 
n i.      ^ J 

connections indicated go to vertices with   a.    or   b. ^ 2,    the only way this 

could happen would be if   a    (say) = 2; again this would be a problem only if 

a, = a. = a    = 1    and    b    =0.    In either i^-e,  if the sequence    B    is to avoid 1       2        3 n 

super-critlcality, we must have   a. s 0   for   n = i > U,    and as already noted 

b. < 1    for    n 4 i * '♦• x — ' 

We may therefore consider a vertex v., and treat it, rather than v  and n 

avoid this problem, unless there are no such vertices, so that n = 5. 

 '-•"  'mr 1    1 1 11 1 
 —-^-■   ■ 
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U.S.    C    2-CRITICAL 

Aa in the previous case, trouble can arise only if (say)   a. ■ a, ■ 1    while 

(say)   a   « 2.    If this should occur, then   b    non-super 2-criticality implies that 

(a., bj = (2,1),  (a. , bIi) - (1,2)    and   a. «  0   for   n ^ i > 4.    Again, this case 
3'    3 U'    U 

may be avoided by connecting   v.    for   n | i > 4   before   v     unless   n = 5. 

We have shown how to proceed with the induction hypothesis if   c    = 1.     In 

order to finish the proof we show in the next two sections how to reduce the other 

cases into this one. 

5.    THE    (1,1)    CASE 

If   (a , b  ) = (1,1),    we replace   v     by two vertices   v' ^ (1,0)   and n      n n n 

v" ^ (0,1);    that is, we change   A    into   A'   = (a.,....a ,0)    and   B   into n x n 

B'  = (b ,...,b    .,0,1).    These changes do not  destroy the realizability of    A', B' 

or    C    (= A'   •♦• B'),    and, of course, condition (1) holds for    A', B'    and    C. 

Let    G'    be a realization of   C,    having an A'-factor    G'    and a B'-factor 

G'  - G! = G*.     If    v'    and    v"    have no common neighbor in    G1,    we obtain a A        B n n 

desired realization   G    of    C    simply by contracting then into a vertex    v  . 

Suppose that    (v', v ) c GI    and    (v", v  ) e G'.    In this ca^, since n     r A n      r B 

c    < (n+1) - i,    we may choose a vertex   v  ,     such that    (v  , v )i G1.    Lev r * ■J s s     r T 

(v,, v ) e G',    say,    (v , v ) e G'.    In    G'     we may replace the edges 
ST ' S T A A 

(v1, v ), (v , v^) by (v*, v^), (v , v ).  After this "interchange", we can 
nr   st       nt   rs 

contract v' and v", as before, 
n      n 

For the proof of Theorem 2, we have now  to show how to modify the contraction, 

when the interchange introduces new cycles into G . This may happen only when 

there is a path in G' between v  and v , and v  is not connected by a path 
A 8 I? T 

in    G'    to any vertex of the path except through    v .     In this case, we have a 
A S 

cycle in G  (after the contraction) which passes through (v , v ), If 
A r  s 

i mm, nfiiir i^MiMiMMn^ 
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Kvr% vt^ ^ G,    then, since    ^n* V8^ ^ 6,    we raay apply a    ^r* ^»^ ^vn* vt^ 

interchaige, and "destroy" the cycle.    Suppose, therefore, that    (v , v^) e Gg. 

Let   v     be the neighbor of   v     in the cycle, other than   v .    Since the inter- 
3 s r 

change and contraction exclude    (v , v )    from   G,    and since   (v . v.) ^ G,    the 
X 8 " J 

interchange from (v , v), (v , v.) to (v , v.), (v , v^) in A removes the 
nt   S]      n  j   s  t 

cycle. 

In the next section we assume that there are no (1,0), (0,1) or (1,1) 

vertices, and hence there are (1,2) or (2,1) vertices. 

6. THE (2,1) OR (1,2) CASE 

The connection procedure involved here is to reduce the degrees of a vertex 

v.    for example from    (2,1)    to    (0,1).    The idea here is that if the remaining 

sequences are all realizable then we can realize them and then insert the vertex 

v.    on any arc in   A    in the realization connecting two vertices other than the 

one to which   v.    gets connected to in   B. 

It is clear that this degree change preserves condition (1), and doesn't 

effect   B   or its realizability at all.    If follows from Lemma 2, from the 

assumption   n > 6   and from the assumption that there are no   (1,0), (0,1)   or 

(1,1)   vertices, that the realizability of   C    is not affected.    Thus we can employ 

this procedure so long as 

1. It does not destroy   A   realizability, and 

2. We are assured that after the realization, the vertex   v^    can be 

reconnected, which will follow if no vertex of    A    touches every one of   A's    edges. 

We will show that changing   a.« = 2   to   a. = 0    cannot effect the realizability 

of   A   here; and that reconnecting   v.    can produce no difficulty.    Note that if 

there are no (1,0),  (0,1)    or    (1,1)   vertices, then by condition (1), there are 

at least four vertices from the set    {(2,1),  (1,2)}.    Therefore, we may assume that 

at least two vertices have degrees    (2,1). 

The firpt result is the following lemma 

} 

— •-■•"    nt 
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Lemma »»! Let C = A •«• B be a degree sequence liavlng no degrees (0,1), (1,0) 

or (1,1) and satisfying condition (1) with at least two vertices having degrees 

(2,1) with A, B, and C realizable. Then if the degrees of v. are altered 

from (?,1) to (0,1) the new degree sequence A is still realizable. 

Proof; Otherwise, the new A would violate some Erdös-Gallai condition; now 

the number of arcs in B is at least M - s/2 where s is the number of 

vertices having degree one in B. Each vertex counted by s muit have degree 2 

or more in A. 

Suppose the k « 1 Erdos-Gallai condition were violated; then a. = MA"1» 

and there must have been at least H - 1 + s/2 arcs in A, M.-l connecting to 

v  and at least s/2 others. This violates condition (1). If the k = 2 or 

higher Erdos-Gallai conditions were violated, the number of arcs in A would be 

at least M. + s - 2 and s is at least 2, which still violates (1) (for 
A 

example for k « 2, after the change counting one arc for the second vertex one 

arc for every vertex after the second and a second arc for every vertex after the 

second having degree 2 or more (at least min{s - 2,0} of these), the sequence 

would have to be 2-supercritical; the total number of arcs in A is at least 

greater than H + s - 3 or if s <_ 2 than H . 

Me now consider the final condition to be proven. 

Lemma 5: With the hypothesis of Lemma 4 either no vertex in the "new" A 

meets all A's edges, or the same is true in B, for n > U. 

Proof: If a vertex in A was to meet every arc of A, then a. = M.-l. 

If M - 1 ^3, the second vertex having degrees (2,1) will have an edge 

passing through it in A that fails to meet v , as desired. If M -1 = 2, then 

that vertex could be    v ,    which would mean that the original    A    degree sequence 

? 

MttÜlttMM 
-■■-     - .... ^--■J....   ,  in — „I^JI^^,^ 



myininnnnn» —.....i.   Mip....».^! 1       l.'^WflgfBl^yi^-limPHiimi-P   imiui    l  Alinumpiiii   um 

f 

11 

was (2,2,1,1,0,0,. ..,0). The original B degree sequence would have to be at 

least (1,1,2,2,2,...} since n > **, and by Interchanging A and B here we 

can obtain the desired result. 

We have thus indicated how our procedures apply in all cases, and the proof 

is complete. 

We notice, that every step of the construction except one always preserves 

the tree-like or forest-like nature of what is constructed. Connecting vertices 

of degree 1 in A or B of course maintains that structure; but in addition, 

the procedures above assure that the remaining degree sequences are tree-like 

since every edge is connected to vertex of at least 2 except in case M.l when 

aiSl- 
| 

For a degree sequence    A    to be forest-realizable, it must have a number of 

arcs no greater than   M.-l. 

Therefore if   A   and/or    B   are forest-realizable, the construction 

procedure upon iteration will yield realizations that are forests, unless at some 

stage case U.l (or 4.2) occurs; at that stage    C    is critical, with   a   = 1,    and 

C * (1,0).    This means that    b   = n - 2,   and   B    is    1-critical also. 

It is easy to see that this configuration can only arise as intermediate 

stage after only step U.l and step U.2 edge assignments have been made.    It will 

lead to a realization that is not a forest for   A    if and only if the number of 

arcs of   A   is   M.-l,    since after the connection of   v , H.    is then reduced by 

two but the number of   A   edges by only one. 

For this to occur, the original    A, B   and   C   must have had a vertex   v 

critical in   B;    must have had no vertex hiving degree 2 or more in   A   and degree 

0    in    B;    and must satisfy (1) as an equality.    These are the conditions of 

Theorem 2. 

■^^ ' i ■     —     '"•'—'-—-'—          —— -M^jMIMaai^^ 
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Obviously the same remarks hold for   A   and   B   interchanged.    If   A   is not 

forest-realizable, then this can never happen for   B   and the realization of   B 

will always be forest-like.    If this case occurs, it obviously occurs only for 

one of   A   and   B,   and the realization of the other will be a forest. 

This completes the proof of Theorems 1 and 2.    Similar arguments prove the 

corollary to Theorem 2. 

7.    CONCLUSIONS 

The arguments above can fail in a number of different ways when condition (1) 

is not satisfied.    Some of these lead to classes of degree sets    A, B, C,   that 

are not simultaneously realizable, though each of   Ä, B,    and   C    is.    It is 

possible that the nature of such sets can be characterized through considerations 

of this kind. 

riMtfBMMMMMMM.« "'' Il' ll>-~-—- ----^    ■ ■- 
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